DevOps – Műszaki Magazin https://www.muszaki-magazin.hu Ipari média / szaklap: Hírek az ipar és gyártás területéről. Thu, 21 Nov 2024 12:31:42 +0000 hu hourly 1 https://wordpress.org/?v=4.8 Úton az iparosított mesterséges intelligencia felé https://www.muszaki-magazin.hu/2021/01/29/devops-uton-az-iparositott-mesterseges-intelligencia-fele/ Fri, 29 Jan 2021 14:58:10 +0000 https://www.muszaki-magazin.hu/?p=13572 A mesterséges intelligenciával ellátott döntéstámogató rendszerek és alkalmazások bevezetésére irányuló projektek száma rohamos tempóban növekszik, mely a következő években alapfeltétele lehet a versenyben maradásnak.  A hatékony fejlesztés és üzemeltetés előfeltétele az informatikai szakterületek összehangolt együttműködésének megteremtése, így igény mutatkozik a mesterséges intelligencia iparosítására. Az MLOps (Machine Learning Operations) olyan irányítási rendszert nyújt a vezetők számára, […]

The post Úton az iparosított mesterséges intelligencia felé appeared first on Műszaki Magazin.

]]>
A mesterséges intelligenciával ellátott döntéstámogató rendszerek és alkalmazások bevezetésére irányuló projektek száma rohamos tempóban növekszik, mely a következő években alapfeltétele lehet a versenyben maradásnak.

 A hatékony fejlesztés és üzemeltetés előfeltétele az informatikai szakterületek összehangolt együttműködésének megteremtése, így igény mutatkozik a mesterséges intelligencia iparosítására. Az MLOps (Machine Learning Operations) olyan irányítási rendszert nyújt a vezetők számára, mely egységes, etikus, jogszabálykövető, agilis modellfejlesztést és üzemeltetést eredményez. Az MLOps 2021 egyik kiemelt trendje, a Deloitte Tech Trends elemzése szerint.

A Deloitte már tizenkettedik éve elemzi a technológiai szektor globális fejlődését, és a Tech Trends kiadványban azokat a piacot formáló aktuális trendeket publikálja, amelyek meghatározzák a vállalatok számára a következő évek fejlődési irányait. A 2021-es kiadvány egyik kiemelt trendje az iparosított mesterséges intelligencia.

Az intelligens rendszerek ipari és üzleti alkalmazásainak lehetőségei az előző években rendkívüli érdeklődésre tettek szert. Ez nagyrészt a technológiai környezet dinamikus fejlődésének (pl. Big Data) és az üzleti hatékonyságnövelésre vonatkozó igényeknek volt köszönhető. Az intelligens rendszerek alkalmasak az üzleti adatok kinyerésére, értelmezésére, előrejelzések és kimutatások készítésére, továbbá nyelvi elemek, képek és videók feldolgozására. Magas színvonalon képesek üzleti feladatok automatizálására, a szervezeti ellenálló képesség növelésére.

A fejlett szervezetek – melyek már számos mesterséges intelligenciával és gépi tanulással ellátott rendszerimplementációs projektet tudhatnak a hátuk mögött – felismerték, hogy az üzleti értéket teremtő intelligens alkalmazásfejlesztés és üzemeltetés során az agilis módszertanok kiaknázása nagyban segíti céljaik elérését. Ugyanakkor kiemelt figyelmet kell fordítani az intelligens szoftverek életciklusából fakadó egyedi igények beépítésére is. Az intelligens rendszerek fejlesztési fázisai merőben eltérnek a tradicionális szoftverfejlesztési megközelítésektől, ezért kulcsfontosságú a felhasznált keretrendszerek finomhangolása és testre szabása.

Elhúzódó implementálás és megtérülés

A felmérésében résztvevő, közel 750 szervezet csupán 8 százaléka nyilatkozott úgy, hogy a mesterséges intelligenciára vonatkozó fejlesztési és üzemeltetési irányelvek egységes keretet alkotnak. A megkérdezettek több, mint 40 százaléka szerint az éles környezetbe történő implementálás lassú, és a tervezettekhez képest csak jóval később érezhetők az üzleti előnyök. Az ezekhez kapcsolódó várakozások elmaradása a sikertelen projektek fő okozója, mely a részletesen kidolgozott, az üzleti célkitűzéseket követő és az egész szervezetet átölelő sztenderd gyakorlatok hiányából ered.

Miért sikertelenek a projektek?

A sikertelen projektek karakterisztikáit vizsgálva számos esetben tapasztalható, hogy az intelligens rendszerek üzletileg hatékony kiaknázásának előfeltétele; az egységes adatmenedzsment kultúrája nem erősség a szervezetben. Az adatok tárolására, feldolgozására és elemzésére vonatkozó erőfeszítések izoláltan működnek a különböző funkcionális szakterületek között. Ez könnyen vezethet szabályozói környezettel kapcsolatos kockázatokhoz. További kihívásokat eredményezhet, ha kreatív adattudósok és adatelemzők saját elképzeléseik szerint, tapasztalatok, preferenciák, egyéb inkonzisztens gyakorlatok alapján hajtják végre a feladatokat. Ezen kockázatokat a mesterséges intelligencia fejlesztési és üzemeltetési gyakorlatait egységesítő keretrendszer használatával lehet mérsékelni. Így jelentkezett igény az iparosított mesterséges intelligencia megalkotására.

Első lépcső: DevOps

20 évvel ezelőtt az egyes informatikai szakterületek hatékonytalan együttműködésének javítására irányuló folyamat fejlesztések során születtek meg a DevOps gyakorlatok. (A Development és az Operations szoros együttműködésére kitalált kifejezés, melynek lényege, hogy a korábban elkülönült fejlesztési és üzemeltetési területek szorosan együttműködve, hatékonyabban tudják kezelni az IT folyamatokat.) Az automatikus alkalmazásfejlesztés, implementálás és információrendszer menedzsment irányelvek révén a DevOps sikeresen transzformálta az IT csapatok működését.

A DevOps folyamatok megfelelő használata magas szoftverminőséget, fejlesztési hatékonyságot és határidő érzékenységet eredményezett. Ez is alátámasztja az MLOps megalkotásának létjogosultságát. Elvárt a modellezési életciklus és fejlesztési eljárások felgyorsítása, effektív nyomonkövetése és monitorozása, egyszerűbb fenntarthatósága, mely összességében az éles vállalati környezetben üzemeltett mesterséges intelligencia alkalmazások minőségi javulásához vezethet. Az MLOps gyakorlatok kifejlesztése is kezdetét vette, összefoglalva mindazon eljárásokat, melyek az intelligens rendszerek hatékony és sikeres fejlesztési és üzemeltetési modelljét érintik. Fókuszában a végfelhasználói élmény fokozása és az üzleti igények minél teljesebb körű kielégítése áll.

Mivel tud többet az MLOps?

„Az MLOps, a DevOps-szal ellentétben, támogatást nyújt az adatmenedzsmentben, növelve az alkalmazott döntési modellek transzparenciáját és a jogszabályi megfelelőséget – ez például a GDPR-ban nyújthat komoly segítséget. A fejlesztők ugyanis gyakran kevés figyelmet fordítanak a felhasznált adatok jogszerűségére, ez pedig szabványosított keretrendszer és a szervezeten átívelő irányelvek alkalmazásával kiküszöbölhető. így a megfelelőség és a mesterséges intelligencia etikus használata kényszerré válik. Egy olyan szervezet, amely több ezer gépi tanuló modellt fejleszt és üzemeltet, egységes irányítási elvek nélkül kizárólag költségként fog tekinteni a mesterséges intelligenciára, nem pedig üzleti előnyként. Az MLOps tehát egy olyan irányítási rendszert nyújthat a vezetők kezébe, mely egységes, etikus, jogszabálykövető, agilis modellfejlesztést és üzemeltetést eredményez” – foglalta össze Barta Gergő, a Deloitte IT Kockázatkezelési tanácsadás üzletágának menedzsere.

Az MLOps alappillérei

A mesterséges intelligencia világának az egyik legnagyobb próbatétele ma a szakértői pozíciók feltöltése: a Deloitte globális kutatása szerint a felsővezetők 68 százaléka nyilatkozott arról, hogy legalább mérsékelt szinten szakember hiánnyal küzd. A megkérdezettek 27 százaléka pedig extrém hiányt tapasztalt. A működési modell e specializált területének egyik fő megközelítése a kollaboráción alapszik, ezért hangsúlyos a rugalmas együttműködést lehetővé tévő szervezeti struktúra kialakítása.

„A másik kihívást az üzleti célokkal összhangban álló mesterséges intelligencia stratégia hiánya jelentheti. Nem elég arról dönteni, hogy szükségünk van mesterséges intelligenciával ellátott megoldásokra, stratégiát kell alkotni annak bevezetésére üzleti esetekkel alátámasztva. A stratégia részét kell, hogy képezze az olyan támogató szakterületek és folyamatok fejlesztése, mint az adatmenedzsment, a kockázatkezelési protokollok meghatározása, valamint a tehetséges szakemberek folyamatos képzésére és megtartására irányuló kultúra kialakítása. A mesterséges intelligencia stratégia megléte ma már alapfeltétele a versenyben maradásnak” – mondta Barta Gergő.

Forrás: Deloitte

The post Úton az iparosított mesterséges intelligencia felé appeared first on Műszaki Magazin.

]]>
Gyorsabb fejlesztés appról appra https://www.muszaki-magazin.hu/2020/08/09/gyorsabb-fejlesztes-approl-appra/ Sun, 09 Aug 2020 16:19:50 +0000 https://www.muszaki-magazin.hu/?p=11173 Egyre nagyobb nyomás nehezedik mostanság az IT-vezetőkre és az alkalmazásfejlesztőkre, hogy a rugalmas üzleti reakciók érdekében lerövidítsék az alkalmazásfejlesztési ciklusokat, és gyorsabban tegyék elérhetővé az új szoftvereket és funkciókat. A SUSE friss felmérése szerint a fejlesztők 87 százaléka szerint ennek a területnek a korszerűsítése kapja idén a legnagyobb hangsúlyt, amelyben fontos szerepet játszanak majd többek […]

The post Gyorsabb fejlesztés appról appra appeared first on Műszaki Magazin.

]]>
Egyre nagyobb nyomás nehezedik mostanság az IT-vezetőkre és az alkalmazásfejlesztőkre, hogy a rugalmas üzleti reakciók érdekében lerövidítsék az alkalmazásfejlesztési ciklusokat, és gyorsabban tegyék elérhetővé az új szoftvereket és funkciókat.

A SUSE friss felmérése szerint a fejlesztők 87 százaléka szerint ennek a területnek a korszerűsítése kapja idén a legnagyobb hangsúlyt, amelyben fontos szerepet játszanak majd többek között a DevOps folyamatok és a konténerek.

A jelenlegi gyorsan változó piaci környezetben a cégek működésének is gyorsan kell alkalmazkodnia az átalakuláshoz. Az agilis alkalmazásfejlesztés pedig az egyik legfontosabb alappillére a sikeres folyamatnak. Ezeket a törekvéseket jól támogatják többek között a DevOps megközelítés és a konténerek – amint arra a SUSE friss kutatása is rámutatott.

Többet, gyorsabban

Az üzleti vezetők folyamatosan nyomást gyakorolnak az alkalmazásfejlesztőkre, hogy egyre gyorsabban készüljenek el az új programokkal, illetve funkciókkal. Nem meglepő tehát, hogy a SUSE tanulmánya szerint a fejlesztők 87 százaléka úgy látja, hogy idén az alkalmazásfejlesztés korszerűsítése lesz a legfontosabb szempont a költségek tervezésekor. Az anyagi keret azonban nem nő egyenes arányban az elvárásokkal: a megkérdezettek 56 százalékánál ugyanakkora marad a költségvetés, mint korábban, és mindössze 31 százaléknál várható valamekkora növekedés a rendelkezésre álló összegben.

A válaszadók 91 százaléka ugyanakkor úgy látja, hogy az agilisabb üzleti működés elengedhetetlen a szervezet versenyképességének javításához. Továbbá 89 százalék szerint hozzájárul az üzleti agilitás növeléséhez, ha gyorsabban teszik elérhetővé az új alkalmazásokat és frissítéseket. Ezeken keresztül tudják ugyanis kiszolgálni az új vagy megváltozott igényeket, és versenyelőnyt jelent, ha rövidebb határidővel tudják teljesíteni, mint a versenytársaik. Mivel azonban a szoftverek kiadási ciklusa jelenleg mindenki szerint túl hosszú, az összes megkérdezett 85 százaléka arra számít, hogy idővel nagyobb gyakorisággal fognak megjelenni az alkalmazások.

Az átlagos kiadási ciklus a vállalatok kétharmadánál jelenleg legalább 12 hónapot vagy még annál is többet tesz ki. Az alkalmazásfejlesztők várakozásai szerint ezt az időtartamot két éven belül hónapokra vagy akár hetekre is lehet csökkenteni majd különféle modern eszközökkel. Az alkalmazásfejlesztés korszerűsítéséhez azonban új technológiákra, folyamatokra és készségekre van szükség a DevOps égisze alatt.

Modern elvárásokhoz korszerű eszközök

A szervezetek napjainkban az agilis fejlesztési módszerekbe fektetnek be a legtöbbet (59%), ezt követik a DevOps csapatok és folyamatok (47%), a mikroszolgáltatás-alapú alkalmazások (40%), valamint a konténerek használata (32%). Ez utóbbi technológiát 2017-ben mindössze a vállalatok 27 százaléka alkalmazta, és népszerűsége előreláthatólag tovább nő: a válaszadók 40 százaléka tervez konténereket igénybe venni a következő egy évben.

A trend érhető, hiszen a technológia lehetővé teszi a konténerbe csomagolt alkalmazások futtatását, ami nem csupán a fejlesztést gyorsítja fel, de a DevOps folyamatokat is támogatja, és az adatközpontok működését is hatékonyabbá teszi.

Profi támogatás

A konténerek terjedésének csupán az szabhat gátat, hogy a kezelésük viszonylag összetett feladat, és külön szakértelmet igényel. Ezért hozta létre a SUSE a CaaS Platformot, amely megkönnyíti az üzemeltető csapatok számára a konténeralapú szolgáltatások bevezetését és működtetését. A megoldás jól működtethető és biztonságos rendszer kínál a technológia használatához, és automatizálja a modern alkalmazások életciklusának kezelését.

Az alkalmazásfejlesztők feladatait pedig a Cloud Application Platform segítségével egyszerűsíti a SUSE. Ez az eszköz egyesíti magában a Kubernetes konténerfelügyeleti technológia és a Cloud Foundry platformszolgáltatás előnyeit, és képes automatikusan létrehozni a különféle futtatókörnyezeteket a szoftverekhez. Így a szakembereknek nem kell időt és energiát fordítaniuk arra, hogy alaposabban megismerjék azt az infrastruktúrát és az ahhoz szükséges konfigurációkat, amelybe ki akarják helyezni az adott alkalmazást.

Mindezeknek köszönhetően a fejlesztők a saját munkájukra koncentrálhatnak, így egyszerűbb IT-környezetben, hatékonyabban dolgozhatnak, innovatív megoldásokat hozhatnak létre, és gyorsabban tudják kibocsátani az új programokat, illetve funkciókat. A vállalatok pedig az iparágvezető, nyílt forráskódú technológiák segítségével a maximumot hozhatják ki befektetéseikből és meglévő megoldásaikból.

The post Gyorsabb fejlesztés appról appra appeared first on Műszaki Magazin.

]]>